Positive bidiagonal factorization of tetradiagonal Hessenberg matrices

نویسندگان

چکیده

Recently, a spectral Favard theorem was presented for bounded banded lower Hessenberg matrices that possess positive bidiagonal factorization. The paper establishes conditions, expressed in terms of continued fractions, under which an oscillatory tetradiagonal matrix can have such Oscillatory Toeplitz are examined as case study admit Furthermore, the proves organized rays, where origin ray does not factorization, but all interior points do

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penrose Inverse of Bidiagonal Matrices

Introduction. For a real m×n matrix A, the Moore–Penrose inverse A+ is the unique n×m matrix that satisfies the following four properties: AAA = A , AAA = A , (A+A)T = AA , (AA+)T = AA (see [1], for example). If A is a square nonsingular matrix, then A+ = A−1. Thus, the Moore–Penrose inversion generalizes ordinary matrix inversion. The idea of matrix generalized inverse was first introduced in ...

متن کامل

Accurate Singular Values of Bidiagonal Matrices

2 has nonzero entries only on its diagonal and first superdiagonal ) Compute orthogonal matrices P and Q such that Σ = P BQ is diagonal and nonnegat i 2 2 2 T 2 ive. The diagonal entries σ of Σ are the singular values of A . We will take them to be sorted in decreasing order: σ ≥ σ . The columns of Q= Q Q are the right singular vec i i + 1 1 2 t 1 2 ors, and the columns of P= P P are the left s...

متن کامل

Inverses of regular Hessenberg matrices

A new proof of the general representation for the entries of the inverse of any unreduced Hessenberg matrix of finite order is found. Also this formulation is extended to the inverses of reduced Hessenberg matrices. Those entries are given with proper Hessenbergians from the original matrix. It justifies both the use of linear recurrences for such computations and some elementary properties of ...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

A note on the stability of the LU factorization of Hessenberg matrices

In this paper we show that Doolittle’s method to compute the LU factorization of Hessenberg matrices is mixed forward-backward stable and therefore, componentwise forward stable. We also conjecture that this algorithm for computing the LU factorization of dense matrices is forward stable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2023

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2023.08.001